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On Solving Singular Integral Equations 
via a Hyperbolic Tangent Quadrature Rule 

By Ezio Venturino* 

Abstract. We propose a scheme for solving singular integral equations based on a "hyperbolic 
tangent" quadrature rule. The integral equation is reduced to a system of linear equations, 
after quadrature and collocation. The matrix of the system is shown to be nonsingular for 
every choice of the number of quadrature nodes by producing a lower bound for its 
determinant. 

1. Introduction. Various methods have been discussed in the literature for solving 
singular integral equations. In this paper, we examine a method which utilizes the 
quadrature formulas proposed by F. Stenger [41 and show the nonsingularity of the 
system of linear algebraic equations which is obtained from discretization of the 
original equation. The formulas proposed in [4] for singular integrals are based on 
the use of the Whittaker cardinal function [2], [8]. They have been applied in [71 to 
singular integral equations using a Galerkin-type approximation. Both the method 
and the quadrature schemes were designed to handle problems whose solutions may 
have singularities at the endpoints of the interval, the exact nature of which is 
difficult to determine. This is the case in almost all the Cauchy singular integral 
equations arising in the applications. 

The scheme we propose to use for solving the singular integral equation makes use 
of the "hyperbolic tangent" quadrature rule. After quadrature and collocation at 
two distinct sets of nodes, the integral equation is reduced to a system of linear 
algebraic equations. Owing to the special form of the quadrature and collocation 
nodes, a new set of knots is generated, at which the unknown function is finally 
evaluated. The matrix of the system is shown to be nonsingular. Two proofs are 
provided, the second of which is geometric and allows the computation of a lower 
bound on the determinant. 

2. Preliminaries. Our concern here is with the following singular integral equation, 

(1,,Jf [g(s) ds/(s - x)] = f (x), -1 < x < 1, 

subject to the normalization condition 

J g(x) dx = C, 
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which, as it is well known, ensures uniqueness of the solution. The quadrature 
formulas and the error bounds we need are given here without proofs, which can be 
found in [4]: 

N 2 
(1 g(x)-dx - h , 2E(1 + E g((E - 1)/(E + 1)) 

(2.1) _k=-N 

< C2exp(-,rV4K)/a 

with 

E exp(kh), h= /rVaiFN 

Ig(X) I < IX2)a; 

(h/27r) E XXkX d 
k=-M Xk(1 + XXkJ | 

< C3(x)exp(-a /OM)//3, -1 <x < 1, 

with 

h =r/ , 8M g(X) I < C3(1 _ X2) 1,- Xk = tanh((k + 1/2) h/2). 

There are two ways of applying these quadrature formulas, corresponding to the 
cases in which we choose either a different or the same number of quadrature nodes. 
These choices lead to two different linear algebraic systems. We obtain these systems 
by replacing the integral by a quadrature formula, this operation leading to a 
functional equation. Then, we discretize it by collocating at a set of knots. The main 
feature in using the above-mentioned quadrature formula is that it leads, together 
with a proper choice for the set of collocation nodes, to a third set of nodes, distinct 
from the quadrature and the collocation ones. Let us call the last set of knots the 
"evaluation nodes". Indeed, it is at this set of nodes that the unknown function will 
be finally calculated, by solving the algebraic system. We turn now to the discussion 
of how the matrices are constructed. 

The First Approach. We use (2.2) with M = 2N. For the principal value integral 
we thus have the approximation 

(2.3) (1/7)f g(t)/(t - x) dt = (h/27) 
k ~~1 X) 

X 1+XXkJ 
-1 k=-2N Xk(1 + XXJ 1 ( Xk) 

with 

h = v /, |gx)N| (1 - X2)1 

while for the normalization condition we get 
N 

(2.4) f g(x) dx = (h/2) E sech2(kh/2)g(tanh(kh/2)). 
-1 k=-N 

Here, 

h = a/ , |jg(x)j| (1 X2). 
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It is clear that in order for the h's appearing in the two equations to be the same, 
the choice a = 2/3 has to be made. The conditions on the growth of the function will 
still be satisfied. Next, we would like to remove the singular behavior of the function 
g near the endpoints. We thus set 

g(t) = F(t)l(l - t), 

with F(t) being the new unknown function. From Eqs. (2.4) and (2.3) we obtain 
N 

(h/2) E sech2(kh/2)/[1 - tanh2(kh/2)] F(tanh(kh/2)) = C, 
k=-N 

h/(NT X(1 + XX2lXk f2 ) h 2Nr Xk F X + Xk (X + Xk 
W 

k=-2N Xk(1 + XXk) l + XX -( + )] ( 

The normalization condition reduces to 
N 

(h/2) E F(tanh(kh/2))= C, 
k=-N 

while the second equation can be rewritten as 
2N 

h/(2n) E (x + l/xk)F[(x + Xk)/(1 + XXk)] =f (x)(1 _ x2). 
k=-2N 

We now proceed to collocate the above equations at a suitably chosen set of nodes, 
namely 

tj= tanh(( j-1/2)h/2), j = -N + 1, ... , N. 

This choice has the nice property of reducing the "evaluation" nodes for the 
unknown function F to a set which includes the unknowns appearing in the 
normalization condition. The resulting equations are 

2N 

h/(2T) ? (tj + 1/xk)F[tanh(k +j)h/2] = f(tj)(i - tJ2 

k=-2N 

j= -N+ 1,...,N. 

Relabeling the unknowns, and denoting by Sk, k = -N,..., N, the "evaluation 
nodes", we have the following form for the system 

N 

E F(s1) = 2C/h, 
1=-N 

(2.5) 
2 N + j 

E ( tj + l/x,-j)F(s,) = 2f(?tj)(1 - t,)/h, j = -N + 1, ... , N, 
1=-2N+ j 

where s, = tanh(lh/2). It is clear that in the above system we have more unknowns 
than equations. It is, however, possible to reduce (2.5) to a square system by the 
following observation. For N large enough the nodes s,, I > N, will cluster around 
the point 1, where the function F(x) has a zero. It is then reasonable to set the 
unknowns F(s,) for 1 > N to be identically zero. We then obtain the final form of 
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the system as 

N 

A F(s,) = 2C/h, 

(2.6) N=-N 

A (t1 + 1/x,1) F(sl) = 2,gf (t1)(1 - tX)/h, j = -N + 1,..., N. 
1=-N 

The Second Approach. Here we use the same number of quadrature nodes in the 
two formulas for the normalization condition and the principal value integral, as 
well as the same parameter specifying the upper bound on the growth of the 
unknown function. In other words, we set M = N and /3 = a in (2.2). Proceeding 
similarly as above, we obtain the following form for the system, 

N 

A F(s,) = 2C/h, 
1=-N 

max(-N+j,-N) N 

E (1 + tj)F(s,) + I (1 + t.)F(s,) 
(2.7) _=-N /=min(NN+j) 

min(N, N+ j) 

+ E (t1 + l/x,1,)F(s,) 
1 = max(-N +j, - N) 

=2 rf(tj)(1-tJ)/h, j = -N+ 1, ..., N. 

The problem is to see for which values of the parameter h the systems (2.6) and 
(2.7) are nonsingular. We remark that h depends on the number of quadrature nodes 
and on the parameter a. The result of the next section shows that no conditions on h 
are necessary in order to ensure the invertibility of the matrices. The systems are also 
solvable for any choice of the number of quadrature nodes, i.e., for any dimension 
the systems have. 

3. Proof of Nonsingularity. 
First Method. Let the matrix of the system (2.6) be denoted by A. We have 

A11=1, j=1,...,2N+1, 

A,,= tNl + l/xj1,, i= 2,...,2N + 1, j = 1,...,2N + 1. 

Let A* denote the transpose of A. By subtracting (1 + tj-N-1)col(l) from col(j) of 
A *, for j = 2,... , 2 N + 1, we obtain the matrix B * = [ /3 ] with 

fil= 1, p = exp(h), 

,81 = 2pJl(p i+1/2 _ pj) i = 1,2, .. ., 2N + 1, j =2,3, ... ., 2N + 1. 

If det B* = 0, there exist constants C1, ... , C2N+I not all zero such that 

2N+ 1 

C 

+ E 

2P jCl(pi+112 
_ 

pJ) = O. i = 19 ... ,2N + 1. 
j=2 

Now let 
2N+ 1 

(x) = H (X -pi), 

j=_ 
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and define the polynomial p(x) of degree < 2N by 
2N+ 1 

p(x) = C14(x) + E 2pCjo(x)/(x - pi). 
j=2 

Since p vanishes at the 2N + 1 distinct points x = pi+1/2 i - 1, . . , 2N + 1, it is 
identically zero. But (p(pi+l/2) # 0, hence Cj = 0 for j = 1, ...,2N + 1, which is a 
contradiction. 

Second Method. We just outline here this approach; for further details the reader 
is referred to [9]. It is possible to find a nonsingular matrix B such that BA = H2N+1 

and 

Hlj= 1, = 1. . . 2N + 19 

(3.1) Hij = aj-ia 2 < i < j < 2N + 1, 
HI.J=-a i -j - 1 1 <i ji <2 N + 1 

a1 = 1/xj = coth((j + 1/2)h/2). 

Thus, A is nonsingular if and only if H = H2N+1 is. The argument for showing the 
invertibility of H can be summarized as follows. Disregarding the first row, we look 
at the columns of H as being vectors in the 2N-dimensional Euclidean space. Then, 
H is nonsingular if and only if the simplex of these vectors has nonzero volume. By 
inserting in it another one with nonzero volume, we obtain a lower bound on the 
determinant of the matrix H. 

We begin by proving the 

LEMMA. Given the closed sets X, Y in the Euclidean space E,, for any projection 
P: Ell -* En we have P(X) c P(Y) if and only if X c Y. 

Proof. (Only if). Suppose by contradiction that for every projection P, P(X) c 
P(Y) and there is z E X such that z O Y. Since Y is closed, we can apply the 
principle of separating hyperplanes. There is then 

T = {t E En: Kc, t) = X, X = Kc, z)} C En 

such that for every y E Y we have Kc, y) < X. 
Let C denote the linear subspace spanned by the vector c, C = [c], and PC the 

projection on it. The above formulas translate into PC(z) = X and PC(y) < X for 
every y e Y. It follows that PC(z) O PC(Y). Contradiction. 

Define the simplex S2N+1 by removing the first row of H2N+1. Also define the 
matrix of the signs of H2N+l, i.e., 

J+ 1 for j >i, i \-1 for j < i. 

Let T2N+1 be the simplex spanned by the columns of V2N+1, once the first row has 
been removed. We have 

det(H2N+l) = (2N + 1) volume (S2N+1), 

det(V2N+l) = (2N + 1) volume (T2N+1). 

Consider now a direction in E2N, given by the vector p = (P1 ... *, P2N). The next 
step consists in calculating the projections of the vertices si and ti of the simplices 
S2N+1 and T2N+l, i = 1, ... , 2N + 1, along the aforementioned direction. Since 
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these are represented by two sets of 2N + 1 scalars, the minimum and the maximum 
in each set are well defined, though they might not be unique. Suppose that for some 
k,O < k < 2N,wehave 

k 2N 

(3.2) KP, tk+l) E Pi E p Pi mi KpIt, 
i=1 i=k?1 1 </ 2 N?+1 

It is possible to show that for the corresponding vertex of S2N+1 the following 
inequalities hold, 

(3.3) (P, Sk+1) < < P, tk+l), 

(3.4) P, Si) > Kp, t1) = max pI t,). 

Consider now x E T2N+1. From (3.3), (3.4) we easily obtain, for any projection P 
onto a one-dimensional subspace, P(x) E [P(sk+l), P(sj)] C RW. Given the arbi- 
trariness of x and P, there follows P(T2N+l) C P(S2N+l), and from the lemma, 

T2N+ 1 c S2N+ 1 which in turn yields 

Volume(S2N+l) > Volume(T2N+1) = 2 2N/(2N + 1). 

Hence, the final estimates are obtained, 

(3.5) 22N < det H2N+1 < (2N + 1)(2a0)2N. 

We remark that the proof has been given for the matrix corresponding to the first 
approach. The second matrix differs from H2N+1 because it has a band of terms 
involving hyperbolic cotangents, while the remaining ones are l's. In the above 
procedure, however, this involves only minor modifications, actually only simplifica- 
tions. It is thus possible also for this case to derive the bounds given in (3.5). 

4. Numerical Results. We describe here a few applications of the method presented 
in the preceding discussion. There are several ways of implementing the numerical 
schemes. Since the matrix of the system is generated by the program, formulation 
(2.6) is slightly easier than (2.7), even though the latter is certainly faster. Indeed, it 
requires a smaller number of operations. However, the savings in execution time 
should not be very large, because the major work done by the computer is the 
Gaussian elimination. Also, instead of simply setting the extra unknowns to be zero, 
as we did in Section 2, we could plainly make them all equal to the two extremal 
values, namely F(sN) and F(s- N). This procedure involves changes in the values of 
the first and last columns of the matrix. The differences observed in some experi- 
ments are small. There appears to be some advantage for the first procedure in some 
cases. In other cases, or in some other part of the interval, the second procedure 
seems to be better. These experiments were performed in Example 3. 

Example 1. We consider the following singular integral equation, 

(1/,7jf g(t)/(t - x) dt = O -1 < x <1, 

subject to the normalization condition 

(1/7J) g(t) dt = 1. 
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TABLE 1 

Nodes Absolute error 

0.00000000 5.842000 E - 9 
0.45954112 4.343400 E - 9 
0.75883331 6.618000 E - 10 
0.90335937 4.258700 E - 9 
0.96309154 1.067750 E - 8 
0.98617234 1.989390 E - 8 
0.99485731 3.414630 E - 8 
0.99809260 5.700450 E - 8 
0.99929328 9.422113 E - 8 
0.99973824 1.551690 E - 7 
0.99990306 2.552007 E - 7 
0.99996410 4.195225 E - 7 
0.99998670 6.895757 E - 7 
0.99999507 1.133623 E - 6 
0.99999817 1.864608 E - 6 
0.99999932 3.071568 E - 6 
0.99999975 5.080657 E - 6 
0.99999990 8.499683 E - 6 
0.99999996 1.468613 E - 5 
0.99999998 2.809432 E - 5 
0.99999999 8.648739 E - 5 

The analytic solution is g(t) = 1/ 1 - t2, from which we have F(t) = 1 - t2. 
Selected values obtained for the absolute errors are shown in Table 1. It appears that 
the convergence for the error at the nodes is fast, and there is good agreement 
between computed and analytical solutions. 

Example 2. Here we consider the singular integral equation 

(1/Xr) J g(t)l(t - x) dt 

= x1V1 - `x2 ln|[1 
_ x2 + V/1 _ 

X2]1[1 
_ X2 _ 5/1 _ 

x2]| 

together with the normalization condition fij g(t) dt = 2. Again, the analytical 
solution is known in closed form, g(t) = ItI/ 1 - t2. It is again easily seen that the 
error at the endpoint +1 gets smaller with an increase in the number of nodes. 
Working in single precision, we obtained the value zero for the computed solution, 
corresponding to the analytical solution F(1), by considering a collocation scheme 
with only 22 nodes; see Table 2. 

TABLE 2 

Nodes Absolute error N 

0.99999999 1.218818 E - 4 20 
0.99999999 1.216840 E - 4 21 
1.0000000 1.931529 E - 7 21 
0.99999999 1.218726 E - 4 22 
1.0000000 less than lE - 8 22 
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Example 3. As a final example, the following singular integral equation is 
proposed, 

(1/ )fI g(t)/(t - x) dt = Um-(x), m = 1, 2,..., 

subject to (1/7r)JJl g(t) dt = 0. The solution is given by 

g(t) = Tm(t)/lrl t2 m = 19 2, ....9 

where T1t(t) and Umi(t) are the Chebyshev polynomials of first and second kind, 
respectively. In this case, the solution throughout the interval of integration was 
calculated. Since the right-hand side of the integral equation is a polynomial of low 
degree, the error at the evaluation knots is very well behaved, being of the order of 
.001 or better. Some results are given in Table 3. 

TABLE 3 

The degree of the Chebyshev polynomial is m = 4. 
Nodes Absolute error 

0.00000000 7.091795 E - 3 
0.60594050 5.340605 E - 3 
0.88641969 2.910557 E - 3 
0.97088225 1.465757 E - 3 
0.99277583 7.225247 E - 4 
0.99822251 3.450673 E - 4 
0.99956355 1.443033 E - 4 
0.99989288 1.729825 E - 5 
0.99997371 1.037775 E - 4 
0.99999355 3.057750 E - 4 
0.99999841 1.107761 E - 3 

The degree of the Chebyshev polynomial is m = 8. 
Nodes Absolute error 

0.00000000 1.961645 E - 2 
0.45954112 1.602601 E - 2 
0.75883331 1.016630 E - 2 
0.90335937 6.085182 E - 3 
0.96309154 3.654146 E - 3 
0.98617234 2.210092 E - 3 
0.99485731 1.341594 E - 3 
0.99809260 8.155942 E - 4 
0.99929328 4.960732 E - 4 
0.99973824 3.017339 E - 4 
0.99990306 1.834430 E - 4 
0.99996410 1.113656 E - 4 
0.99998670 6.733893 E - 5 
0.99999507 4.027224 E - 5 
0.99999817 2.334706 E - S 
0.99999932 1.229572 E - 5 
0.99999975 4.312979 E - 6 
0.99999990 2.712145 E - 6 
0.99999996 1.103880 E - 5 
0.99999998 2.562212 E - 5 
0.99999999 8.406757 E - 5 



ON SOLVING SINGULAR INTEGRAL EQUATIONS 167 

A few final comments are in order. The choice for the quadrature nodes implies 
that they cluster around the endpoints of the interval, where they provide good 
accuracy. However, the behavior of the solution in the middle of the interval tends to 
be missed. To increase the number of nodes in order to diminish the length of the 
subinterval closest to the origin, leads to further complications, as is illustrated by 
the following computation for a = .5. To obtain x0 = .1 we need h = .40134, which 
corresponds to N = 122, but to get x0 = .01, we need h = .0400 and N = 12336. 
Also, in some cases of oscillatory solutions, the numerical results become poorer 
than the ones presented here. This is due to the fact that the error bounds appearing 
in (2.1) become large in these situations. 
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